SCIENTIFIC PROJECT REPORT

BINDER DESIGN COMPOSITE HYDROCARBON ANTI-RUTTING

The purpose of this document is to provide clear and comprehensive documentation of the research carried out by the students. Students are expected to work with this document and complete the information appropriately throughout the research project. The mentor and designated project supervisor will also assist the students in this task. This will help students learn appropriate scientific documentation of research, which is an important skill in itself. In addition, at the end of the research, the research documentation will be in a state that could be suitable for further publication.

Summary

In order to take concrete action in the fight against global warming, this project set out to study a more environmentally-friendly and responsible way of making bituminous concrete (BB), a material widely used in road construction. The stated aim is to recycle non-biodegradable waste (non-opaque, transparent and coloured plastic bottle waste, tyre waste) so that it can be reused in the production of a BB that consumes fewer natural resources (natural rock) and gives polluting plastic waste a useful second life. In addition to its environmental impact, this material is less expensive and more resistant in terms of the Cameroonian environment. It is through a calculated modification of the elements used in the manufacture of BB that this project aims to contribute to the preservation of non-renewable resources, in particular aggregates (gravel and sand), while reducing the presence of polluting waste in the environment.

The plastic waste and tyres collected for the manufacturing process have been shredded and precisely characterised to ensure that :

- the chemical components of the waste used will react favorably with those of the hydrocarbon binder used
- the particle size of the shredded waste falls within the reference range for use in the manufacture of bituminous concrete

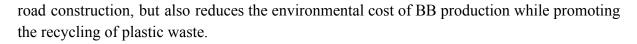
Overall, we partially substituted bitumen (the main binder used in the application of BB) with fine granules of tyres and plastic waste, more precisely known as polyethylene thiophthalate. The substitution was carried out in increasing percentages of 10%, 20%, 30% and 40%, and mechanical characterisation tests were carried out on each sample to check the behavior and quality of the samples with reference to the standards in force.

It was thus found that for the Marshall and Duriez tests, the increase in the percentage of plastic waste leads to a slight reduction in the initial characteristics of the asphalt concrete, but without this being outside the limit values. In the PCG test, however, the increase in the percentage of plastic waste leads to an increase in compactness, so that at 40% substitution, the asphalt concrete is no longer classified as BBSG (Béton Bitumineux Semi-Grenu), but rather as BBAO (Béton Bitumineux Anti-Orniérant). The same increase in mechanical characteristics as a function of the percentage of substitution was observed in the rutting test.

Table of Content

Summary	2
Contents	3
Introduction	4
Literary magazine	5
Methodology	6
Results	7
Discussion	8
Conclusion	9
References	10
Appendices	11

1. Introduction


As part of its contribution to reducing greenhouse gasses (GHGs), Cameroon has drawn up a document entitled Nationally Determined Contribution (NDC), which defines the areas in which it will participate in international efforts to combat global warming. The national objective is to reduce GHG emissions by 32% by 2035, when, according to the 2015 scenario, they will reach 104 MtCO2eq, an increase of 166% compared with 2010. From a sectoral point of view, although transport only accounts for 7% of emissions, its growth is greater than that of national emissions (178%). It is therefore of particular interest that actions aimed at reducing transport-related GHG emissions should be considered. In terms of transport in general, and road transport in particular, vehicles make a significant contribution to global warming, but the construction of infrastructure such as roads is no less important. Road infrastructure requires the use of materials that have a significant environmental impact, but also consumes natural resources that take millions of years to build up.

Economic and development objectives are leading to an increase in travel facilities and means of transport such as roads and motorways. However, asphalt roads are subject to increasingly severe climatic and operational constraints. In order to guarantee the continuity of traffic, it is necessary to use artificial materials such as Bituminous Concrete to withstand the daily constraints of traffic, service and climate. Asphalt concrete is a heterogeneous material made up mainly of natural rock (sand and gravel) and a hydrocarbon (a product of petroleum distillation). Although the latter plays a very important role in the quality of BB, it has a negative environmental impact.

In addition, our cities, which need roads, are faced with an abundance of nonbiodegradable waste, such as plastic bottles and tyres, which constitute a major environmental threat. In sub-Saharan African countries such as Cameroon, recycling has not really been implemented, and waste management needs to be improved. As a result, gutters, waterways and public spaces have often become dumping grounds that require substantial funding to restore. It is therefore important to find a simple and practical way of recovering this waste.

Faced with the dual concern of protecting the environment and producing more durable pavements at lower cost, geotechnical engineers have suggested asphalt concretes doped monophasically (with each of these wastes). This separate recovery is often subject to a number of limitations, including cushioning (in the case of asphalt concrete enriched with tyre waste) and skid resistance (in the case of asphalt concrete doped with plastic waste). To resolve the two concerns mentioned above, on the one h a n d , and to guarantee skid resistance by putting an end to cushioning, on the other, we have considered the concomitant use of this waste in bituminous concrete. This way of making non-biodegradable waste profitable is in line with Sustainable Development Objective 11.

Based on the above observations, the project that is the subject of this report was initiated with the main aim of developing a binder that not only meets the technical needs of

This project, led by the CMR-002 student group in collaboration with the 3E's 4 Africa association, has the following specific objectives:

~Propose a composite binder capable of meeting current road construction needs and current BB classification standards;

~Reduce the amount of waste in our towns and cities by using it in road construction through an efficient and cost-effective recycling method;

~Reduce the use of hydrocarbon binders in the manufacture of BBs, thereby reducing their financial cost and environmental impact.

Achieving the above-mentioned objectives required a work plan that led us in turn to a literature review, a definition of the work methodology, the carrying out of trials and the exploitation of the results, discussions on the basis of the results obtained and finally an overall conclusion on the work carried out.

2. Literature review

Bituminous concrete is a mixture of gravel, sand, fillers and bitumen, used for pavements. Several varieties o f bituminous concrete have been developed to meet the increasingly stringent requirements.

2.1.Asphalt concrete components

Bituminous concrete is made up of aggregates and bitumen in precise proportions, with characteristic properties as specified in the standard. Additives may be added to improve its properties.

2.1.1. Aggregates

This is a mixture of crushed mineral grains made up of sand, gravel and fillers. The aggregates must not be polluted, they must have a satisfactory shape and good adhesion to the bitumen. The requirements for bituminous concrete are set out below.

2.1.1.1. Gravel

Gravels for asphalt mixes are class 4/6, 6/10 or 10/14 aggregates. According to CEBTP 1984, aggregates for asphalt mixes have a number of characteristics, including hardness (resistance to attrition, fragmentation and polishing), surface cleanliness, shape and size, and dosage.

2.1.1.2. Sand

Asphalt sands are 0/2 or 0/4 crushed sands, often with 18% (0/2) or 10% to 14% (0/4) filler. These sands must be clean with an ES (sand equivalent) greater than 40 (CEBTP, 1984).

2.1.1.3. Fillers

Fillers or fines are sands and dusts smaller than $63\mu m$. The fines of a Hydrocarbon mix are generally a mixture of fines in small proportions. The specifications for fillers are defined in standard NF EN 13043.

2.1.2. Bitumen

Bitumen is a natural organic material or one produced by the distillation of crude oil. It is a dark, highly viscous or solid material used in construction and public works, particularly for road surfacing (USIRF, 2011).

2.1.2.1. Obtain

There are two ways of obtaining bitumen: extracting the material in its natural state (NJIMOLUH, 2018) and refining crude oil (Bitume Info, June 2002).

2.1.2.2. Propriétés

The qualities of coating layers are closely linked to the characteristic properties of the binders that make them up.

The physical properties are softening point, flash point, fire point, density, loss of mass on heating and cohesion-ductility (Béghin, 2003).

Mechanical properties include impermeability, consistency, Fraass brittleness point, adhesion to aggregates and viscosity (Béghin, 2003).

The chemical properties are solubility and paraffin content (Béghin, 2003).

2.1.2.3. Typology

After being manufactured in industry by distillation of crude oils, bitumens can be used as they are or not. These new varieties can be obtained by air blowing or rectification, by deasphalting using a selective solvent, or by adding certain additives to improve properties in order to better meet requirements. There are several types of bitumen, including pure bitumens, special bitumens, fluidified bitumens, fluxed bitumens, oxidized bitumen and bitumen emulsions (J.P. Sergent et al. 2005).

2.1.2.4. Areas of use

Bitumen is mainly used in road construction (coating), waterproofing (tunnels, reservoirs, etc.) and industry (protective coatings on pipes and electrical cables).

2.1.3. Additives

Additives in BB are additional components added to improve the properties of the mixture. The list of BB additives is fairly extensive. These include sulfur (J. BROZ et al. 2003), waste plastic powder and rubber or tyre powder (TADJER, 2020).

2.2. Formulation of bituminous concrete

The Marshall method and the Laboratoire Central des Ponts et Chaussées (LCPC) method are the most widely used formulation methods.

Depending on the intended use, the type of asphalt and the stresses, the requirements may be different. This is why, for the LCPC method, the mix design test has been divided into several levels ranging from 1 to 4 (DELORME et al. 2007). Level 0, introduced in the general standard NF P 98-150-1, corresponds to a description of the asphalt concrete formula.

2.3. Manufacture and application of asphalt concrete

The various stages leading to the final product after formulation are the dosing of the constituents and mixing (KEITA, 1992).

Implementation involves spreading, leveling and compacting, while complying with spreading temperatures and compacting specifications (TAPSOBA, 2012).

2.4. Essential characteristics of bituminous concrete

Bituminous concrete is characterised by several parameters linked to their requirements. These include workability, resistance to bleeding, resistance to rutting, resistance to cracking, durability and resistance to stripping (Zadjaoui et al. 2015).

2.5. Types of bituminous concrete

Bitumens are classified according to several criteria such as the manufacturing process, the application temperature (S. Le Bec, 2014; Deffreux et al. 2009), the function (CEBTP, 1984; Deffreux et al. 2009; Bitume info n°29 Spring - Summer 2013; Bitume Québec and EUROVIA, 2006), and other specific characteristics such as texture or structure.

In addition to the above list, there are special asphalts for which the use of reinforcing elements is essential. This category includes studded asphalt concrete, asphalt concrete with vulcanized rubber (promoted by the MTQ - Ministère des Transports du Québec - since 2000), asphalt concrete with glass (Norambuena-Contreras and Gonzalez- Torre, 2015) and bituminous concrete reinforced with plastic waste (Gachi Azeddine and Rahmani Amel, 2017)

3. Methodology

A summary of the research questions:

- 1. How can the mechanical strength of the wearing course be increased?
- 2. How can non-biodegradable material (gravel) be preserved or used rationally?
- 3. How can we protect the environment?
- 4. How can waste plastic bottles and tyres be recycled simultaneously in asphalt concrete?

A description of the method :

The conventional materials (bitumen and gravel) used and the bituminous concretes are tested in accordance with the standards relating to t h e processing of waste plastic bottles and tyres.

3.1. Tests carried out on aggregates

Aggregate characterisation was carried out in the first quarter (March 2022 - June 2022) of the start-up of this project, which was initially planned for one (01) year, i.e. 12 months.

- (a) The parameters of the GA [(granulometric curve of the granular mixture) NF P 94 056];
- (b) Real density EN 1097 6 : 2000/A1 : 2005 ;
- (c) The coefficient (LA) NF P 18 573;
- (d) The coefficient (MDE) NF P 18 572;
- (e) The coefficient (CA) NF P 18 561;
- (f) Sand equivalent (ES) NF P 18 598;
- (g) Cleanliness level NF P 18 591.
- **3.2.**Processing waste tyres and plastic bottles

Both types of waste were transformed into powders.

3.3. Test carried out on the modified binder (penetrability test (NF EN 1426)

The penetrability test is used to determine the consistency of hydrocarbon binders.

The principle of the test is to fill the bucket with a fluid binder at a temperature of 25°C and place the bucket under a needle weighing 100 g, then allow the needle to sink under its own weight for 5 seconds.

The result of this test, which is the consistency value, is read off the dial and the average of the three results obtained is taken to the nearest unit.

3.4.Formulation and manufacture of control and modified bituminous concretes3.4.1. Formulation

It is carried out in accordance with standard NF P 98-150-1 to obtain the fractions of the different granular classes.

3.4.2. Manufacture

It is carried out in accordance with the requirements of standard NF EN 13 108 - 1.

3.4.3. Characterisation

The various bituminous concretes (trial and modified) obtained were characterised using Duriez and Marshall tests (carried out in the first quarter, from March 2022 to June 2022), followed by PCG and penetrability tests (in the second quarter, from September 2022 to November 2022) and, finally, rutting tests (in the third quarter).

(a) Duriez test (NF P 98 251-1)

The aim of this test is to determine the simple compressive strength, the imbibition rate and the degradation coefficient of a bituminous concrete.

The principle of the test is to produce nine (09) test specimens by double-acting static compaction at constant speed for five (05) minutes. Three (03) specimens are used to measure the density by hydrostatic weighing in order to calculate the percentage of voids. The others are crushed after seven (07) days of storage at 18°C in air for the first series of three (03) and in water for the remaining three (03).

The *essential* asphalt concrete *parameters* to be determined are the simple compressive strength (R), the imbibition rate (I) and the degradation coefficient (d).

$$R = \frac{F}{S}$$
 Formula 1

Where:

F is the force required to demolish the test piece ;

S is the surface area of the test piece.

The imbibition rate I is calculated by formula 2.

$$I = \frac{M_0 - M}{M_0} * 100$$
 Formula 2

Where:

 M_0 is the mass of the test piece after 7 days of soaking;

*M*is the mass of the test piece just after demoulding.

The degradation coefficient, d, is calculated using formula 3.

$$d = \frac{r}{R}$$
 Formula 3

Where:

r is the resistance of bituminous concrete to simple mechanical compression, after seven years.

(07) days in water at 18° C;

R is the resistance of bituminous concrete to simple mechanical compression, after seven (07) days of storage in air at 18° C.

(b) Marshall test (NF P 98 251-2)

The purpose of the test is to determine the stability, Marshall creep and compactness of bituminous concrete..

The principle consists of applying fifty (50) blows to each side of the test specimen over a period of five (05) minutes using a 4.5 kg tamper dropped from a height of 40 cm.

Of the seven (07) test specimens made, four (04) were immersed in water at a temperature of 60° C for thirty (30) minutes. They were then subjected to simple compression at a speed of 50

mm/min. The other three (03) are used to measure density by hydrostatic weighing to calculate compactness.

The parameters of interest are stability (formula 4), Marshall creep and compactness (equation 5).

S = 18.7 * La + 26

Formula 4

This is the reading on the ring.

$$C = 100 * \left(\frac{MVA}{MVR}\right)$$
 Formula 5

MVA is the apparent density of bituminous concrete ;

MVR is the actual density of the bituminous concrete.

The creep (F) is the arithmetic mean of the settlements of the four (04) specimens.

(c) Gyratory Shear Press Test (NF EN - 12697 - 31)

The purpose of the test is to assess the workability of a hot mix.

The test principle consists of compacting a hot mix in the gyratory shear press by applying a pressure of 600 KPa on a cylindrical specimen inclined by

1.25° and subjected to a speed of 30 gyrations per minute.

The percentage of voids to be assessed in relation to the number of gyrations $\begin{pmatrix} N_{g_i} \end{pmatrix}$ esis noted V_{i} .

(d) Rutting test

The aim is to assess the rutting resistance of hydrocarbon asphalt mixes under conditions comparable to those encountered on the road.

The principle of the test is to measure the depth of the rut in % of the slab thickness, as a function of the number of forward and return cycles.

At a frequency of 1Hz \pm 0.1 Hz, a rolling load of 5000 N \pm 50 N is applied to 60°C \pm 2°C.

Rut depths are measured at 1 000, 3 000, 10 000 et 30 000 cycles.

Values are given to 10^{-2} approximation.

The context and rationale for choosing your Method

This method was chosen for the following reasons:

- (a) Improving the properties of bituminous concrete by adding tyre powder and plastic waste powder;
- (b) Rational use of non-renewable materials (aggregates);
- (c) Cleaning up and protecting the environment by recycling waste plastic bottles and tyres;
- (d) Cost-effective road construction.

An assessment of your choice of method, and a statement of its limitations:

This methodology makes it possible to:

- (a) Improving the mechanical properties of asphalt concrete ;
- (b) Clean up the environment by significantly reducing plastic bottle waste and tyre waste;
- (c) Planning more sustainable roads.

However, the following points were not addressed:

- a. The life cycle analysis has not been assessed;
- b. Rigidity has not been assessed;
- c. The chemical formula has not been determined;
- d. Chemical characterisation was not addressed;
- e. Young's modulus.

4. Résultats

4.1.Aggregate characteristics

Parameters	0/4	4/6	6/10
Water content W (in %)	3.57	2.51	1.81
CA Flattening Ratio (%)	/	14.8	15.2
Real density (g/cm3)	2.763	2.818	2.830
Los Angeles, LA (in %)	/	29	30
Micro Deval Humide, MDC (in %)	/	17	19
Sand equivalent, ES (in %)	80	/	/
Cleanliness rate (%)	/	94	95

4.2. Results of the MArshall trial

Parameters	Samples			
	1	2	3	4
Stability (in Kg)	997	997	1 030	1 040
Creep (in mm)	2.6	2.7	3.5	3.3

4.3.Results of the Duriez trial

Parameters		Sa	amples	
	1	2	3	4
Compressive strength (in Mpa)	7.9	8.3	9.1	10.4
Average compactness (%)	91	92	93	93

4.4.Results of the Gyratory Shear Press test

Number of revolutions	10	50	80	100
Asphalt conc	rete with 10%	b partial bitur	nen substitu	tion
Empty spaces (%)	15,1	7,9	5,8	4,2
Asphalt conc	rete with 20%	b partial bitur	nen substitu	tion
Empty spaces (%)	14,7	7,1	5,1	4
Asphalt conc	rete with 30%	b partial bitur	nen substitu	tion
Empty spaces (%)	14,2	8,4	5	4
Asphalt conc	rete with 40%	b partial bitur	nen substitu	tion
Empty spaces (%)	14	7,2	4,6	3,4

4.5.Results of the rutting test)

A	sphalt concr	rete with 10%	6 partial bit	umen subst	itution
Average value	1,85	3,15	5,85	6,95	30 000 cycles
A	sphalt concr	rete with 20%	6 partial bit	umen subst	itution
Average value	1,7	3,1	5,6	6,6	30 000 cycles
A	sphalt concr	rete with 30%	6 partial bit	umen subst	itution
Average value	1,6	2,58	5,15	5,91	30 000 cycles
A	sphalt concr	rete with 40%	6 partial bit	umen subst	itution
Average value	1,6	1,65	4,9	5,9	30 000 cycles

5. Discussion

1. At 100 gyrations, the four (04) modified bituminous concretes have a compactness of practically 96%. This complies with standard NF P 98-252. These compactnesses (2015), which is 94%. As a result, the four (04) modified bituminous concretes have good workability.

2. Only the 30% and 40% modified bituminous concretes each have a strength greater than or equal to that of the reference material (9.1 MPa). This represents an extreme increase of 12.5%, which is similar to the improvement achieved by Ratsifaherndary et al (2022) by adding 15% plastics to the asphalt concrete.

3. The stability of the four (04) modified bituminous concretes complies with standard NF P 98-251-2 and is better than that of the control composite. However, REXOVIA has a stability of 1420 kg, which means it outperforms the neo-composites.

4. The rut depth rates of the four (04) neo-bituminous concretes are lower than that of the reference bituminous concrete (7.02%). The anti-rutting asphalt concrete RUFLEX M, at 5.6%, is fairly close to the 30% and 40% rut depths of modified asphalt concrete.

6. Conclusion

Incorporating waste plastic bottles and tyres into bituminous concrete improves the properties of the material while protecting the environment, since non-biodegradable waste is recycled. It also reduces the quantity of bitumen used, which is the component that makes obtaining bituminous concrete more expensive. However, the lack of information relating to fatigue and stiffness tests means that we are unable to assess its lifespan and the possibility of reducing the thickness of the pavement for rational use of the non-renewable material (gravel and quarry sand). It should also be noted that it is necessary to carry out a chemical analysis and a test bed for a better assessment of the improvement in characteristics on a real scale.

7. Références

- 1. J.C. Deffreux, K. Charif, P. Claudy; (2009), Enrobés hydrocarbonés et enduits superficiels pour chaussées aéronautiques, France, 78 p.
- 2. J.P. Planche, S. Cordel, M. Chaverot, D. Perraton; (2005), Polymères et Bitumes Modifiés par des polymères, Montréal, 133 p.
- 3. Long, N.-T., Environmental Geothechnics, Proceedings of 2nd International Congress on Environmental Geotechnic. 1996, 809-814.
- 4. Mathieu, Y.; Marchal, J., Bulletin des Laboratoires des Ponts et Chaussées 1989, 162.
- 5. plastic-wikipedia
- 6. Newell, R. Rubber in the environmental age progress in recycling Technology, R., Ed.; Rapra Technology, U.K: 1996, pp 7.1-7.7.
- 7. Cedar report on plastic bottle recycling
- 8. Rapport des politiques Québécoises avec la société RECY-QUEBEC au sujet de la valorisation des déchets de pneumatiques, 2008.
- 9. Joint Report by Bitume Québec and EUROVIA on Asphalt mixes: formulation, manufacture, placement Montréal 2006 (For BBPH, EME, ECF, BBTM, BBUM).
- 10. Pr. MBESSA Michel, Ing. Chercheur MBENKOUE MBIDA Isidore Parfait, FEGEU Pancrace, Rapport d'expertise pour améliorer la qualité des pavés écologiques produits par la Fondation Cœur d'Afrique de Albert Roger MILLA.
- 11. Report on the development of household plastic packaging recycling in Algeria (July 2012).
- 12. Houénou KAWANOU, D. Adolphe TCHEHOUALI, Emile A. SANYA* and Antoine K. VIANOU (2014). "Effects of incorporating plastic bag waste melt on bitumen consistency.
- 13. Catalogue of pavement surface degradations from the Laboratoire Central des Ponts et Chaussées, March 1998 ;
- 14. Kapil S., and Punjabi K.K. Improving the Performance of Bituminous Concrete Mix by Waste Plastic. Int. Journal of Engineering Research and Applications. 2013 ; 3(5): 863-868.
- 15. Ratsifaherandahy Flemond Dolin, Mamiharijaona Ramaroson, Rajaonah Rabevala, Ramorason Jean De Dieu, and Randriamalala Tiana Richard. Improving the mechanical performance of semi-grained asphalt concrete with pure bitumen and waste plastics. American Journal of Innovative Research and Applied Sciences. 2022; 15(4): 123-130.
- Mohamed Brahim HACHANI, Djihad DAAS and Nabil KEBAILI. Experimental study of a bituminous concrete modified with rubber powder: Influence of the modification mode. Revue ElWahat pour les Recherches et les Etudes Vol.7n°2 (2014) : 33 - 43
- 17. & Hinislioglu S. & Agar E., 'Use of waste high density polyethylene as bitumen modifier in asphalt concrete mix', Materials Letters, 2004: 267-71.
- 18. Saoula S. et al, 'Improvement of the stability of modified bituminous binders within EVA', International Journal of Applied Engineering Research, 2008: 575-584.
- 19. Julienne Berthe Dongmo-Engeland Ing de l'ENTPE, PhD thesis La Caractérisation des Déformations d'Orniérage des Chaussées Bitumineux. Presented at the Institut National des Sciences Appliquées de Lyon, 18/03/2005 266 p.
- 20. Tatiana Blade ENSCSP engineer, PhD thesis on the synthesis, characterisation and rubber evaluation of new hybrid reinforcing fillers, (31 October 2011) at the University of Bordeaux 1, 174P.
- 21. Mobilise Your City, Report, Supporting Cameroon and its cities in planning low-carbon urban mobility.

8. Annexes

Annexe 8.1. Paramètres PCG

Batiment & Travaux Pablics - Commerce Général - Laboratoire Généralingue - Exénement el - Prestations de services - Import/Expert

SIEGE SOCIAL YAOUNDE

Lobernein Clothiloigue de carjonie "B" school le PV de ST se la creatizion d'agricante MINUP de 18/03/2922 NIU MOTETANA 2357 / Die RECCHE REJ VMO/2021/B/124 – BD 2843 Y AUTINDP Emoli i <u>informatical com</u> – Coopte Bassaire N⁶(6939711601 42, Afriked Fire Bask Ste nali i <u>alcoleboracen</u> ("W1:237 690 349 212 7 673 601 670

PV_Nº19-09-22

CLIENT: MBENKOUE MBIDA Isidore Parfait

OBJET: ETUDE DE FORMULATION D'UN BEFON BETUMINEUX EXPORIMENTAL

Nombre de girations	10	50	80	100	Spécifications
Béion	bitomineus à 0%	ò de substitutio	n partielle de	bitume (B	B ₀ }
Compacters (%)	84,3	91,6	94	95,6	the second second second
Vides (%)	15,7	\$,4	6	4,4	4 - 9
Béton l	situmineux A 10%	o de substitutio	on particile de	bitume (B	B ₁₀)
Compacités (%)	84,9	92,1	94,2	95,8	
Vides (%)	15,1	7,9	3,8	4,2	4-9
Béton l	atomineus à 20%	ó de substituti	m partielle de	bitame (0	B ₂₄₀)
Compacités (%)	85,3	92,9	94,9	96	
Vides (%)	14.5	7,1	.5,1	4	4 - 9
Béton b	hitumineurs à 30%	h de substituti	un partielle de	bitome (B	B ₃₀)
Compacités (%)	85,8	91,6	95	96	
Vides (36)	14,2	8,4	5	4	4-9
Béton	biunnineux à 409	é de substituti	on particlle de	bitume (F	(B ₄₀)
Compatités (%)	36	92.8	95,4	95,6	
Vides (%)	[4	7,2	4.6	3,4	4-9
	A 10 girations	$V_{\min,Ng1} = 10$	A 80 giratio	ns V _{min No2}	$\simeq 6$; $V_{Ng2} = 8.5$
	V _{Ng1} :			Vanak Na2	
Spécifications			Varia		$\leq V_{max,Ng2}$
		$\leq V_{N_{\rm S}1}$;	- m.) n.	$4 \le \%$ vid	
	"/wides	$\geq 15\%$	an inclusion dates		na 15 k

Procès-verbal essai PCG

Annexe 8.2. Paramètres Duriez

		et de la résistance de désenrobage par l'eau. (NF P 98 - 251 - 1)								
nenackas	47.357 / No RCCM offigmail.com – Co	E BC/YAO/202 mpte Baricaire	6 commission d'age 1/B/124 - BP.7841 (Nº0633931004-49, A 349-212 / 678-60 (7)	(AOUNDE (ritand First Basis)						
			Date de l'essa	ie						
Nature : Béton bloumlaeux 6/10						N A				
		2	3	4	5	6				
1						9,2				
2	9,2	9,2	9,2	9,2	9,2	9,2				
3	9,2	9,2	9,2	9,2	9,2	9.2				
4	9,2	0,2	9,2	9,2	9,2	9,2				
5	9,2	9,2	\$.Z	9,2	9,2	9,2				
6	9,2	0,2	0,2	9,2	9,2	9,2				
	9,2	9,20	9,2	9,2	9,2	9,2				
1	8,0	8,0	8,0	8,0	8,0	8,0				
Z	8,0	8,0	8,0	8,0	8,0	8,0				
3	8,0	8,0	8,0	8,0	8,0	8,0				
	8,0	8,0	8,0	8,0	8,0	8,0				
	50,2	50,2	50,2	50,2	50,2	50,2				
	452,2	492,3	462,2	462,2	462,2	462,2				
a (Kg)	995,6	985,3	991,3	987,7	905,4	994,2				
n (Kg)	1019,7	1004,6		2						
	2,154	2,132	2,145	2,137	2,154	2,151				
	exu	eau	int	air	-					
	2200	2400	2720	2800	DH	DH				
	43,8	47,8	54,1	35.7						
	Rel(eau) (bars))	43,8							
	Re(air) (bers)			54	.9					
	Rc/Rc			0,8	3					
		Taux d'absorption d'eau (36)		2,1	9	St				
	1 2 3 4 5 6 1 2	1 1 9,2 3 9,2 4 9,2 5 9,2 4 9,2 5 9,2 6 9,2 1 8,0 2 8,0 3 8,0 3 8,0 3 8,0 6 9,2 1 8,0 2 8,0 3 8,0 6 9,2 1 8,0 3 8,0 6 9,2 1 8,0 6 9,2 3 8,0 50,2 452,3 a (K2) 995,6 n (Kg) 10119,7 2,154 eza 22,154 eza 22,10 43,8 Rc(esa) (bacs Rc/Re Tacs d'absory	1 2 1 9,2 9,2 2 9,2 9,2 3 9,2 9,2 4 9,2 9,2 5 9,2 9,2 6 9,2 9,2 1 8,0 9,2 6 9,2 9,2 1 8,0 8,0 2 8,0 8,0 3 8,0 8,0 3 8,0 8,0 3 8,0 8,0 3 8,0 8,0 3 8,0 2,2 6 92,5 995,6 995,6 995,5 995,5 n (Ng) 1019,7 1004,6 2,154 2,132 2400 43,8 47,8 Rc(resu) (bars) Rc(resu) (bars) Rc/resu) (bars) Rc/resu) Rc / Re Taus d'absorption d'eau	Date de l'essai L L 1 9,2 9,2 2 9,2 9,2 9,2 3 9,2 9,2 9,2 4 9,2 9,2 9,2 5 9,2 9,2 9,2 6 9,2 9,2 9,2 1 8,0 8,0 8,0 2 9,2 9,2 9,2 4 9,2 9,2 9,2 5 9,2 9,2 9,2 6 9,2 9,2 9,2 1 8,0 8,0 8,0 2 8,0 8,0 8,0 3 8,0 8,0 8,0 3 8,0 8,0 8,0 452,2 452,3 462,2 a (Sg) 995,6 995,3 991,5 a (Ng) 1019,7 1004,6 - 2,154 2,132 1,145 cau <tdc< th=""><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th><th>Date de Fessai : Echanithes: $ffect HAMTT/LLO,$ 1 2 3 4 5 1 9,2 9,2 9,2 9,2 9,2 2 9,2 9,2 9,2 9,2 9,2 3 9,2 9,2 9,2 9,2 9,2 4 9,2 9,2 9,2 9,2 9,2 5 9,2 9,2 9,2 9,2 9,2 6 9,3 9,7 0,7 9,2 9,2 1 8,0 8,0 8,0 8,0 8,0 2 8,0 8,0 8,0 8,0 8,0 3 8,0 8,0 8,0 8,0 8,0 3 8,0 8,0 8,0 8,0 8,0 462,2 462,2 462,2 462,2 462,2 462,2 452,3 452,3 452,3 452,3 452,4 1019,7 1004,6</th></tdc<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Date de Fessai : Echanithes: $ffect HAMTT/LLO,$ 1 2 3 4 5 1 9,2 9,2 9,2 9,2 9,2 2 9,2 9,2 9,2 9,2 9,2 3 9,2 9,2 9,2 9,2 9,2 4 9,2 9,2 9,2 9,2 9,2 5 9,2 9,2 9,2 9,2 9,2 6 9,3 9,7 0,7 9,2 9,2 1 8,0 8,0 8,0 8,0 8,0 2 8,0 8,0 8,0 8,0 8,0 3 8,0 8,0 8,0 8,0 8,0 3 8,0 8,0 8,0 8,0 8,0 462,2 462,2 462,2 462,2 462,2 462,2 452,3 452,3 452,3 452,3 452,4 1019,7 1004,6				

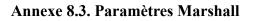
		NUMIQUE APPARI USSURES HYDROS	
Méthode C : Epranoette	quatallinée» NE EN	12697 - 6	
Espectuve Laborative Operating on the caliporier "1" variant lef	ttes DURIEZ		5.
NIR: IMBRIDIANCAS, 2 No. BOTHO F Banal radiansearchickygyan barra – Cara	C/YAO/2001/0718 - BP.2518 pre Backary N '06539/11001-65.	PADENDE Millerd Fig (Bad):	
Siis ord, uicabhgicean ;	141 : 231 000 549 202 7 675 601 6	4 - 127-	
PROJET :			
Date de l'essai :			
Nature : Bénes bicarningues 0/10			
Echamillon: FECHANTILLONA			
Nº épreuvelle	1	2	3
Ports de l'éprouvette passe dons l'air (g)	225,4	994,2	
Poids de l'éprouverte pesée avec paraffine (g)	1025,6	1028,6	· · · · · · · · · · · · · · · · · · ·
Poids de la paraitine (g)	30,2	34,4	
Poids de l'éprouvette pars/Émère posée dans l'eau (g Poids de l'eau déplacé (g	526,3 427,3	521,3	
Température de l'eus (°C)	25,0	25,0	
Densité de l'eau (g/cm*)	0.997	0,997	
Volume de l'épinerette parafilitée (em?)	500,802	508,826	
Volume prostiine (cm?)	33,633	38,652	
Volume éprouvette (cm?)	466,870	470,175	
Densité hydrostatique (g/cm²)	2.1.32	2,115	
Densirê hydroatatique metyenne (g/em²)		2,123	
		S	MIENENACK SIEW Président Directe

	et c	le la résit "B" suivant le / Na RCCM:	ion de la stance d PV da ST d. RC/YAO/D	21/13/124 - 139.	c à la coi bage par l) d'agrément b	l'eau. (N IINTP du 18/0 DE	F P 9
				0 349 212 / 673 6	01 678	uret Double	
Provenance :				Date de l'essa		1-1-1-2 1 1 2	1.1.0
Nature : Béion bitumineux 0/10				Echanrillon :	BCHAV	VIILLO	NX
		1	2	3	4	5	б
N ^s Epmavette	1	1 9,3	2. 9.3	9,3	+ 9.5	9,3	5.3
	2	9,5 9,3	9,3	9,3	9,2	9,3 9,3	5,3
	3	9.3	9.3	9.3	0.3	2,3	9.3
Hauteurs de Téprouvite (em)	4	9.8	9,5	9,8	0,3	9,3	9,3
	3	9,3	9,3	9,3	9,3	9,3	9,3
	6	9,3	9,3	¥,3	5,0	9,5	9,3
Hauteur moyenne H (am)		9,3	9,30	9,5	9,3	9,3	9,3
Diamètre de l'éprouvette (cm) Diamètre (noven D en (cm)	1	8,0	8,0	0.8	8,0	8,0	8)
	2	8,0	8,0	8,0	8,01	8,0	S ,0
	3	3,0	8,0	8.0	8,0	8,0	8,
Diamèrre moyen D eo (cm)		8,0	9,0	8,0	8,0	8,0	8,6
Section épaouv s = (3.14D ³)/4		50,2	50,2	30,2	50,2	50,2	50,2
Volume: HS=(3.14HD ²)/4=B		407,2	467,2	467,2	467,2	467,2	467,
Poids de l'éprouvene avant inumersion (= Λ	(Kg)	991,6	981,3	987,5	982(7	991,4	992,2
Poids de l'éprouvette après immersion (Kg)	1019,7	1004,6	1 M			
Densité apparente (T/m ²). A/B		2,122	2,106	2,113	2,103	2,122	2,12
Conservation		car.	60.0	air	aiz	1	
Chesse (Kg) – C		2250	2450	2770	2850	DH	DH
Résistance (cars) C/S	-	44,8	43,8	55,1	56,7		
		Re'(eou) (bars			46	.8	h.
Résoltats des essais		Re(air) (bars)			55	,9	
meaningts des essais		Re ¹ /Re			0,	84	
		Taux d'absorp	tico d'era		, 2,	90	
		(74)	SMFW	MACK SIEWE	tin		

and a second sec	N DE LA MASSE VE ITUMINEUX PAR A		
Méthode C : Eprovreise	oparatilades MFEN	12697 - 6	
Eprouve	ttes DURIEZ		
Laboratori Génecical a con egone "6" i crister le SUL a definitad-1638 / los MUCASI Envell : con en constante de la constante de la constante Star vel : a los Heres - cons	60/53.0/2021/67/04 - 61º 3980	LYAO UNING: Affaland Powe Basic	
PROJET :		1997 -	
Date de l'essai :			
Nature : Bétres bicomineus 0/10			
Echantillan: ECHANTILLON &			
the second s			
Nº époouvette	J	2	3
Poids de l'éprovivette pesée dans fair (g)	991,4	992,2	
Poids de l'épreuvette pesée avec paralline (g	1022,6	1026,6	
Ponds de la parafilme (g)	31,2	34,4	
Poiste de l'éponesette parcétimée pesée dans l'eau (g)	520,0	-815,9	
Poids de l'em déplacé (g'	\$02,6	510,7	
Température de l'eau (°C)	25,0	25,0	
Densité de l'eau (g/ cm.')	799,6	0,997	
Volume de l'éprouvette paraffinée (nu')	504,112	512,237	-4
Volume paraffine (cm*)	35)056	38,652	
Volume épreovette (em²)	4\$9,055	473,585	-
Densité hydrosistique (g/cm²)	2,114	2,005	
		2,104	the second of military is the second s

© 3 E's 4 Africa e.V. | All rights reserved | 24

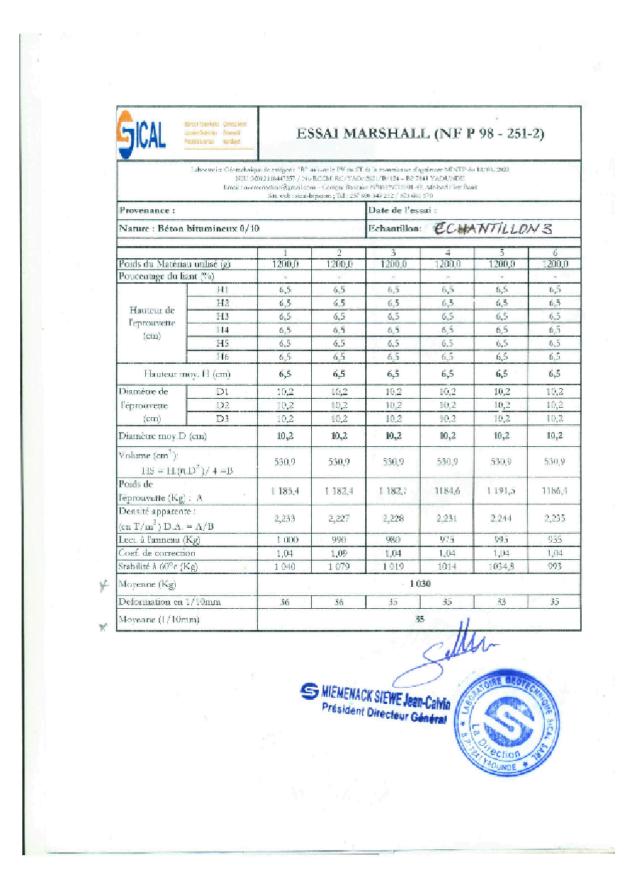
Steel Institute - Generaliser Unter Records - Second Passes and - Second	De	ESSAI DURIEZ Détermination de la résistance à la compression axialle et de la résistance de désenrobage par l'eau. (NF P 98 - 251 - 1)							
Laboraroure Géorechniqu RUUrd Ernail : mise	401711SH reu aclasi	17367 / No RCCM signal.com - Co	h RC/VAO/200 mpte Bancaire	a commission d'agr 1/87 121 – 88 7841 ° N°66939711001-49, a 360 212 / 675 601 67	VAOUNDE Milland First Bage				
Provenance :				Date de l'essa	Li				
Nature : Béron birnmineux 0/10				Echantillon : .	3				
Nº Epinouvette		2	3	4	5	8	9		
tv typiouvene	1	2,3	9,3	9,3	9,3	9,3	9,3		
	2	9,3	9,3	9,3	9,3	9,3	9,3		
		9,3	9,3	9,3	9,5	9,3	9,3		
Hauteurs de l'éprouvite (em)	-4	9,3	9,3	9,3	9,3	9,3	9,3		
	5	9,3	9,3	9,3	9,3	9,3	9,3		
	6	9,3	9,3	9,3	9,3	9,3	9,3		
Hauteur moyenne H (cm)		9,3	9,30	9,3	9,,3	9,3	9,3		
Diamètre de l'éponavette (em)	1	8,0	8,0	8,0	8,0	8,0	-8,0		
	3	8,0	8,0	. 8,0	8,0	8,0	8,0		
	3	8,0	8,0	8,0	8,0	8,0	8,0		
Diamètre moyen D en (cm)		8,0	8,0	8,0	8,0	8,9	9,0		
Section éprouv : (3.14D ³)/4		50,2	50,2	50,2	50,2	50,2	.50,2		
Volume: HS=(3.14HD ²)/4=B	0.0.1	467,2	467,2	467,2	467,2	467,2	467,2		
Poids de l'éprouvette avant immersion = A		995,0	997,4	996,5	994,0	901,2	095 Jr		
Poids de l'éprouvette après immersion	: (Kg)	1011,9	1015,3	1.1	-	-			
Densité apparente (T/m ⁴): A/B		2,130	2,135	2,135	2,127	2,119	2,125		
Conservation		con	60	tir	nir		100		
Charge (Kg) C		2450	2550	2950	3000	DH	DH		
Résistance (bars) C/S		48,8	50,8	58,7	59,7				
	X	Re ⁱ (eau) (bars)		49,8				
	V	Re(air) (bars)			59	,2			
Résultats des essais	X	Rc'/Rc	and the design of		0,2	34			
· · · ·	K	Taux d'absorption d'eau K. 1955							
		9	MIEMEN Présiden	ICK SIEWE Jea	n-C	S Litestie	Pa		


DETERMINATION DE LA MASSE VOLUMIQUE APPARENTE DES EPROUVETTES BITUMINEUN PAR MESURES HYDROSTATIQUES						
	Méthode C : Epinaveia	esparatiliotes NP EN ettes DURIEZ	12697 - 6			
	Intépre de catégorie "B" sativant la NU :NO12110447367 / No RCCH: hiemenackste@gmail.com - Com	PV du ST de la commission RC/YA0/2021/9/124 - BP.764	4 VAOUNDE R. Alriand First Sark	8022		
PROJET :			H**			
Data de Fescai :						
Nature : Béton hitumintos 0/10						
Echanoillon : 👘 🕱						
Nº éprouveite		1	2	3		
Poids de Répresevente pesée dans l'air (g)		990,2	223,0	-		
Pouls de l'éprouvette pesée avec p	anathine (g)	1030,1	1035,4	-		
Poids de la parattine (g)		39,9	42,4	-		
Poids de l'éponwette paraffinée p	es éci dánia l'esta (g)	519,6	525,6			
Poids de l'eau déplacé (g)		510,5	509,8	-		
Tempénature de l'eau (°C)		23,0	25,0	-		
Densité de l'eau (g/cm²)		0,997	0,997	-		
Volume de l'éprouvetre paraffinée	(cm ²)	512,036	511,534	-		
Volume parathese (cm²)		44,831	47,640	191		
Violuzite éprouvette (cm²)		467,205	463,694	6		
Deusité hydrostatique (g/om?)		2,110	2,142			
Densité hydrostatique moyenne (p/cm ²)		2,130				

Sensi Inaz Isia - Janez Sech Jacom Kachya - Jacomi Hazar Kachya - Jacomi Hazar Kachya			ion de la	ESSAI DU a résistance le désenro 251 -	e à la con bage par		
Laboratoire Géotechnique NIU :N Iten al : raisem	(0121084 kmackels	47387 / No BOON riggmail.com - Co	E RC/YAO/082 imple flancaire	ia commission d'age 1/8/124 - 80.7841 N°0448971300 1-49, 7 349-212 / 673-601 67	VAOUNDE miland Piest Bani		
Provenance :				Date de l'essa			
Nature : Béton bitumineux 0/10				Echantillon :	4		
· · · · · · · · · · · · · · · · · · ·				1	t		
N ^a Eprouvette	_	1	2	3	4	5	6
ra ispioneene	1	9,3	2,3	2,5	9,3	9,3	9,3
	2	9,3	9,3	9,3	9,3	9,3	9,3
Hauteurs de Tépreuvite (cm)	3	9,3	9,3	9,3	9,3	9,3	9,3
randeous de Tepasarde (car)	4	9,3	9,3	9,3	9,3	9,3	9,3
	5	9,3	9,3	9,3	9,5	9,3	9,3
	G	9,3	9,3	9,3	9,3	9,3	9,3
Hauteur moyenne H (cm)	1	9,3	9,30	9,3	9,3	9,3	9,
Diamètre de l'éprouverte (cm)	2	8,0 8,0	3,0	8,0	8,0 8.0	8,0 8.0	E, 8.
	3	8,0	3,0	8,0	8,0	8,0	6.
Diamètre moyen Di en (cm)	-	8,0	8,0	8,0	8,0	8,0	8,
Section éprouv : (3.14D ⁸)/4		50,2	50,2	50,2	50,2	50,2	50
Volume H8=(3.14HD ²)/4=B		467,2	467,2	467,2	467,2	467,2	467
Poids de l'éprouverte avant immension = Δ	(Kg)	983,8	994,9	989,3	1001,2	995,6	993,
Poids de l'éprouvette après immersion	(Kg)	998,8	1009,3	-	-	-	
Densité apparente (T/m ⁴): A/B		2,106	2,129	2,117	2,143	2,133	2,13
Coaservation		cau	cau	ait	air		- 1
Charge (Kg) C		2545	2620	3010	3100	DH	DH
Résistance (bass) C/S		50,7	52,1	- 59,9	61,7		
	*	Re'(eau) (bars)	1	51	,4	1
	N	Re(air) (bars)			60	,8	1
Résultats des essais	×	RC/Rc			0,	85	
	N	Taux d'absorp	oticio d'eau		1,	19	
	N-	(3%)			11-		
		S HIE Pré	MENACK Si sident Dire	EWE Jean-Cal	T	GEOTECH	A SIGN

DETERMINATION DE LA MASSE VOLUMIQUE APPARENTE DES EPROTVET TES BITUMINEUX PAR MESURES HYDROSTATIQUES						
	ette <i>aparatificies NF EN</i> avettes DURIEZ	12697 - 6				
Email : miemens skais #gmail.com - 0	GM: RG/YAQ/2021/8/174 - 8P.784	H YAOUNDE 9. Afriland First Bank	1022			
PROJET :		1.00				
Date de l'assai :		E.				
Nature : Béton bitumineux 0/10						
Echantillon : 🥖 4						
N ^a épronsente	1	2	3			
Poids de l'éprouverte passée dans l'air (g)	296,5	893,8	-			
Poids de l'éprouvette pesée avec paraffine (g)	1011,2	1020,4				
Poids de la paraffine (g)	14,ň	26,6	-			
Polida de l'épimuratre paraffinée pesée dans l'aan (g)	523,2	\$35,4	-			
Poids de l'our déplacé (g)	488,0	485,0				
Température de l'eau (°C)	25,0	25,0				
Densité de l'ezu (g/cm²)	0,997	0,997	1.4			
Volume de l'éprouverte paraîtinée (cm²)	489,468	486,459	4			
Volume penelline (crož)	16,404	29,838				
Volume éprouverre (em?)	473,064	456,572				
Denasté hydrostatique (g/cent)	2,107	2,177				
Densité hydrostatique movemne (g/ cm²)		2,142				





		le catégorie °B° a 0120847367 / No mackele@gmail.co	nivant le PV du S RCC50 RC/YA0 n - Compte Ban	ARSHAL T de la communitation 0/2000/09/09 - 000 calle: Nº160399713001- 7 600 319 202 / 673 69	Pagrément MINT 943 YAOUNDE 49, Afrikand First I	P_d= 18/03/2022	-2)
Provenance :				Date de l'es	sai:		
Nature : Béton b	itumineus 0/1	0				TILLON .	1
		T	2	3	4	5	6
Poids du Matériau	utilisé (g)	1200,0	1200,0	1200,0	1200,0	1200,0	1200/
Pouceritage du lier	at (%%)	-	-		-	-	-
	H1	6,5	6,5	6,5	6,5	6,5	6,5
Haureur de	H2	6,5	6,5	6,5	6,5	6,5	6,5
feprouvette (cm)	113	6,5	6,5	6,5	6,5	6,5	6,5
	H4	6,5	6,5	6,5	6,5	6,5	6,5
	115	6,5	6,5	6 _x 5	6,5	6,5	6,5
	H6	6,5	6,5	6,5	6,5	6,5	6,5
Hauteur mo	y. H (cm)	6,5	6,5	6,5	6,5	6,5	6,5
Diamètre de	D1	10.2	10,2	10,2	10,2	10,2	10,2
l'éprouvette	D2	10,2	10,2	10,2	10,2	10,2	10,2
(cm)	D3	10,2	10,2	10,2	10,2	10,2	10,2
Diamètre moy.D (cm)	10,2	10,2	10,2	10,2	10,2	10,2
Volume (cm^3) : HS = H.(n.I	2 ²)/ 4 ≈B	530,9	530,9	530,9	530,9	530,9	530,9
Poids de l'éprouvette (Kg) :	Poids de l'éprouvette (Kg) : A		1 198,2	1 191,7	1198,3	1 193,4	1197,:
Densité apparente (en T/m ²) D.A. =		2,249	2,257	2,245	2,257	2,248	2,255
Lect à l'anneau (K	R)	920	967	935	980	970	935
Coef, de correctios	the second se	1,04	1,09	1,04	1,04	1,04	1,04
Stabilité à 60° c (K _i	e) -	957	1 054	972	1019,2	1008,8	972
Moyenne (Kg)				- 99	77		
Deformation en 1,	/10mm	25	25	30	30	25	25

Sin

Provenance :	the start of the start, where	30.2 MILL 10.0	bip.can (Tid: 237	Date de l'essi			
Nature : Béton b	itumineux 0/1	0		Echantillon:	ECH	ANTILLO	W4
		-					- 1
Poids du Marériau	urilisă (a)	1 1200,0	2	3	4 1200,0	5. 1200.0	6
Poncentage du lian	The second se	120000	1200,0		1200,0	1200,0	1.20
	H1	6,6	6,6	6,6	6.6	6,6	ő,
	:12	6,6	6,6	6,6	6,6	6,6	6,
Hauteur de	H3	6,6	6,6	6,6	6,6	6,6	6,
l'eprouvette (cm)	H4	6,6	6,6	6,6	6,6	6,6	6,
(only	115	6,6	6,6	6,6	6,6	6,6	6,8
Hauteur mo	HIS	6,6	6,6	6,6	6,6	6,6	6,5
	r. H (cm)	6,6	6,6	6,6	6,6	6,6	6,
Diamètre de	D1	10,2	10.2	10,2	10.2	10,2	10,
l'éprouvette	D2	10,2	10,2	10,2	10,2	10,2	10,
(cm)	D3	10,2	10.2	10,2	10,2	10,2	10.
Diamètre moy D (i	an)	10,2	10,2	10.2	10.2	10,2	10.
	y	roin	1090		1010	1.540	201
Volume (cm ³):		539,0	539,0	539,0	539,0	539,0	539
$HS = H.(\pi, f)$ Proids de	r)/4≅B						
Prads de l'épocavette (Kg) :		1194,4	1 192,2	1 192,7	1189,6	1.195,1	119
Densité apparente				++			
$(en T/m^3) D.\Lambda =$	Å /B	2,216	2,212	2,213	2,207	2,217	2,2
Lect. à l'anneau (K		1 005	995	1 005	1 000	995	25
Coef. de correctioe		1.04	1,09	1,005	1.04	1,04	1,0
Stabilité à 60° c (Kş	and the second se	1.045	1 085	1.045	1040	1034,8	99
Moyenne (Kg)				104			
-	10	1					
Deformation en 1/		.35	30	35	35		35
Moyenne (1/10mn	n)	1. Sec. 1.		.33			
			S MIEME Présid	NACK SIEWE Jea ent Directeur G	n-Calvin iénérai		

Annexe 8.4. Paramètres Orniérage

1000

2 6 DEC 2022

SIEGE SOCIAL YAOUNDE

Laboratoire Générchuigue de ortégorie "B" ruinant le PV du ST de la commitcion d'agrément MINTP du 18/03/2022 NIU 1M012118447357 / No RCCM: RC/YAO/2021/B/124 – BP.7841 YAOUNDE Email : mientenecksie/gignail.com – Compre Banate N°6693971100149, Afrikand Firrt Back Site web : sical. http.com ; Tél : 237 639 349 212 / 673 601 670

PV_Nº20-09-22

CLIENT: MBENKOUE MBIDA Isidore Parfait

OBJET: ETUDE DE FORMULATION D'UN BETON BITUMINEUX EXPERIMENTAL

Procès-verbal essai d'ORNIERAGE

Béton b	itumineux i	à 0% de sub	stitution par	tielle de bi	tume (BB ₀)
	Roue	droite			Spécifications
Nombres de cycles	1000	3000	10 000	30 000	Vides (%)
Ornière (%)	1,6	3,0	5,7	6,9	5 - 10
	Route	gauche			Spécifications
Nombres de cycles	1000	3000	10 000	30 000	Vides (%)
Omière (%)	2,4	4,5	6,5	7,14	5 - 10
Valeur moyenne	2,0	3,7	6,1	7,02	≤ 7,5% à 30 000 cycles
Béton bi	tumineux à	10% de sub:	stitution par	tielle de bit	turne (BB10)
	Roue	droite			Spécifications
Nombres de cycles	1000	3000	10 000	30 000	Vides (%)
Ornière (%)	1,7	2,8	6,0	6,5	5 - 10
	Specifications				
Nombres de cycles	1000	3000	10 000	30.000	Vides (%)
Omière (%)	2	3,5	5,7	7,4	5 - 10
Valeur moyenne	1,85	3,15	5,85	6,95	≤ 7,5% à 30 000 cycles
Béton bit	tumineux à	20% de sub	stitution par	tielle de bit	tume (BB ₂₀)
		droite		-	Spécifications
Nombres de cycles	1000	3000	10 000	30 000	Vides (%)
Ornière (%)	1,8	3	5,8	6,2	5 - 10
	Route	gauche			www.commerce.com/commerce.com/
Nombres de cycles	1000	3000	10 000	30 000	Vides (%)
Ornière (%)	1,6	3,2	5,4	7,0	5 - 10
Valeur moyenne	1.7	3,1	5,6	6,6	< 7.5% à 30 000 eveles

- Batiment & Travaux Publics - Commerce Général - Laboratoire Géotechnique - Evénementiel - Prestations de services - Import/Export

SIEGE SOCIAL YAOUNDE

Laboratoire Göstechnique de caségorie "B" toiheant le PV du ST de la consultation d'agrimmet MINTP du 18/03/2022 NIU sM012118447357 / No RCCM: RC/YAO/2021/B/124 – BP.7841 YAOUNDE Emnil : miemenacksic@gmail.com - Compte Bawaire N°06949711001-49, Afrikand First Bank Site web : sical_http:com ; Tél : 237 690 349 212 / 673 601 670

	Roue	droite			Spécifications
Nombres de cycles	1000	3000	10 000	30 000	Vides (%)
Orniète (%)	1,8	3	5,2	6,0	5-10
and the second se	Route	gauche			
Nombres de cycles	1000	3000	10 000	30 000	Vides (%)
Ornière (%)	1,4	2,7	5,1	5,82	5 - 10
Valeur moyenne	1,6	2,58	5,15	5,91	≤ 7,5% à 30 000 cycle
Béton bi	tumineux à	40% de subs	stitution par	tielle de bi	tume (BB40)
	Roue	droite			Spécifications
Normhann de malas	1000	3000	10 000	30.000	Vides (%)
Nombres de cycles			5-10		
Ornière (%)	1,9	4,3	4,0		
and the second se		gauche	4,0	- opo	Construction of Street, St
and the second se		the second s	10 000	30 000	Vides (%)
Ornière (%)	Route	gauche			Vides (%) 5 - 10

Annexe 8.5.. Recueil de quelques factures

Batiment & Travaux Publics - Commerce Général Laboratoire Géotechnique - Evénementijel Prestations de services - Import/Export

SIEGE SOCIAL YAOUNDE

Laborateire Génesbeique de catigorie "B" suitant le PV de ST de la commission d'agriment MINTP de 18/03/2022 NIU :M012118447357 / No RCCM: RC/YAO/2021/B/124 – BP.7841 YAOUNDU Email : miemenacksie@gmail.com – Compte Banarire N°06939711001-49, Afrikand First Bank Site web : sical.http.com ; Tél : 237 690 349 212 / 673 601 670

277

Yaoundé, le

ele for arbeiter

in die Fandalie en In die Fandalie

FACTURE_Nº09-05-22

CLIENT : MBENKOUE MBIDA Isidore Parfait

OBJET : FTUDE DE FORMULATION D'UN BETON BITUMINEUX EXPERIMENTAL

ITEMS	DESIGNATION	Unité	Qté	P.U.	P.T.
1	Essai DURIEZ	U	4	285 000	1 140 000
2	Essai MARSHALL	U	4	400 000	1 600 000
3	Procès-verbal des essais	FFt	1	300 000	300 000
	TOTAL HORS TVA (FCFA)			3 040 0	00

ARRETE LA PRESENTE FACTURE A LA SOMME trois millions quarante mille FCFA hors TVA.

Batiment & Travaux Publics - Commerce Général Laboratoire Géotechnique - Evénementiel Prestations de services - Import/Expórt

SIEGE SOCIAL YAOUNDE

Laboratoire Géotechnique de catégorie "B" uninant le PV du ST de la commitsion d'agrément MINTP du 18/03/2022 NIU :M012118447357 / No RCCM: RC/YAO/2021/B/124 – BP,7841 YAOUNDE Email : microcrackels@gradil.com – Compte Bancaire N°06939711001-49, Afriland First Banch Silv web : sical. http://org. 78/ : 237 690 349 212 / 673 601 670

Yaoun<u>dé, le</u> 10 SEPT 2022

D Joele Pascal Geolechniques

es Sciences

nte | Enseignante en 15 Sola de Feodador

Enseignante en Etade

FACTURE _Nº19-09-22

CLIENT : MBENKOUE MBIDA Isidore Parfair

OBJET: ETUDE DE FORMULATION D'UN BETON BITUMINEUX EXPERIMENTAL

ITEMS	DESIGNATION	Unité	Qté	P.U.	P.T.
1	Essai PCG (Presse à compactage Giragtoire)	u	4	300.000	1 200 000
2	Procès-verbal des essais	FFC	1	100 000	100 000
	TOTAL HORS TVA (FCFA)			1 300 0	00
Remise exceptionnelle(FCFA)				-100 0	00
	NOUVEAU TOTAL HORS TVA(FCFA)			1 200 0	00

ARRETE LA PRESENTE FACTURE A LA SOMME DE : UN MILLION DEUX CENT MILLE FCFA HORS TVA.

Batiment & Traveux Publics - Commerce Général Laboratoire Géntechnique - Evénementiel Prestations de services - Import/Export

SIEGE SOCIAL YAOUNDE

Labradoire Géotschnigne de tatégorie "B" inieant le PV de ST de la commission d'agriment MINTP de 18/03/2022 NIU 20012118447357 / Ne RCCM: RC/YAO/2021/B/124 – BP.7841 YAOUNDE Eanil : miemenacksie@gmail.com – Comple Banacire N°06939711001-49, Afrikand First Bank

Sits web : sical-brp.com ; Tel : 237 690 349 212 / 673 601 670

the second

Yaoun<u>dé, le</u> 2 6 DEC 2022

FACTURE_Nº20-09-22

CLIENT : MBENKOUE MBIDA Isidore Parfait

OBJET : ETUDE DE FORMULATION D'UN BETON BITUMINEUX EXPERIMENTAL

ITEMS	DESIGNATION	Unité	Qté	P.U.	P.T.	
1	Essai d'ornierage	u	4	500 000	2 000 000	
2	Procés-verhal des essais	FFt	1	100 000	100 000	
TOTAL HORS TVA (FCFA)			2 100 000			
Remise exceptionnelle(FCFA)			-100 000			
	NOUVEAU TOTAL HORS TVA(FCFA)		2 000 000			

ARRETE LA PRESENTE FACTURE A LA SOMME DE : DEUX MILLION FCFA HORS TVA.

